
Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

Yecheng Jason Ma* ;1 Andrew Shen* ;2

Osbert Bastani1 Dinesh Jayaraman1

1 University of Pennsylvania 2 University of Melbourne

Abstract

Reinforcement Learning (RL) agents in the real world must
satisfy safety constraints in addition to maximizing a reward
objective. Model-based RL algorithms hold promise for re-
ducing unsafe real-world actions: they may synthesize poli-
cies that obey all constraints using simulated samples from a
learned model. However, imperfect models can result in real-
world constraint violations even for actions that are predicted
to satisfy all constraints. We propose Conservative and Adap-
tive Penalty (CAP), a model-based safe RL framework that
accounts for potential modeling errors by capturing model
uncertainty and adaptively exploiting it to balance the reward
and the cost objectives. First, CAP in�ates predicted costs us-
ing an uncertainty-based penalty. Theoretically, we show that
policies that satisfy this conservative cost constraint are guar-
anteed to also be feasible in the true environment. We fur-
ther show that this guarantees the safety of all intermediate
solutions during RL training. Further, CAP adaptively tunes
this penalty during training using true cost feedback from
the environment. We evaluate this conservative and adaptive
penalty-based approach for model-based safe RL extensively
on state and image-based environments. Our results demon-
strate substantial gains in sample-ef�ciency while incurring
fewer violations than prior safe RL algorithms. Code is avail-
able at: https://github.com/Redrew/CAP

1 Introduction
Many applications of reinforcement learning (RL) require
the agent to satisfy safety constraints in addition to the stan-
dard goal of maximizing the expected reward. For example,
in robot locomotion, we may want to impose speed or torque
constraints to prevent the robot from damaging itself. Since
the set of states that violates the imposed constraints is of-
ten a priori unknown, a central goal ofsafereinforcement
learning (Pecka and Svoboda 2014; Garc�a and Fernández
2015) is to learn a reward-maximizing policy that satis�es
constraints, while incurring as few constraint violations as
possible during the agent's training process.

To reduce the cumulative number of constraint viola-
tions during training, a promising approach is to incorporate
safety considerations into sample-ef�cient RL algorithms,
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such as model-based reinforcement learning (MBRL) (Sut-
ton 1990, 1991). MBRL refers to RL algorithms that use
learned transition models to directly synthesize policies us-
ing simulated samples, thereby reducing the number of real
samples needed to train the policy. Given the true envi-
ronment transition model, it would be trivial to synthesize
safe policies without any violations, since we could simply
simulate a sequence of actions to evaluate its safety. How-
ever, MBRL agents must learn this transition model from
�nite experience, which induces approximation errors. In
this paper, we ask:can safety be guaranteed during model-
based reinforcement learning, despite these model errors?
We prove that this is indeed possible, and design a practical
algorithm that permits model-based safe RL even in high-
dimensional problem settings.

Speci�cally, we propose a model-based safe RL frame-
work involving a conservative andadaptive costpenalty
(CAP). We build on a basic model-based safe RL frame-
work, which simply executes a model-free safe RL algo-
rithm inside a learned transition model. We make two im-
portant conceptual contributions to improve this basic ap-
proach. First, we derive a conservative upper bound on the
error in the policy cost computed according to the learned
model. In particular, we show that this error is bounded
above by a constant factor of an integral probability met-
ric (IPM) (Müller 1997) computed over the true and learned
transition models. Based on this bound, we propose to in�ate
the cost function with an uncertainty-aware penalty function.
We prove that all feasible policies with respect to this con-
servative cost function, including theoptimal feasible pol-
icy (with highest task reward), are guaranteed to be safe in
the true environment. A direct consequence is that we can
ensure that all intermediate policies are safe and incur zero
safety violations during training.

Second, this penalty function, though theoretically opti-
mal, is often too conservative or cannot be computed for
high-dimensional tasks. Therefore, in practice, we propose
a heuristic penalty term that includes a scale hyperparame-
ter to modulate the degree of conservativeness: higher scales
produce behavior that is more averse to risks arising from
modeling errors. Thus, different scales may be appropriate
for use with different environments and model �delities.

We observe that this crucial scale hyperparameter need
not be manually set and frozen throughout training. Instead,
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we can exploit the fact that the policy receives feedback on
its true cost value from the environment, to formulate the
entire in�ated cost function as a control plant. In this view,
the scale hyparparameter is the control input. Then, we can
readily apply existing update rules from the control literature
to tune the scale. In particular, we use a proportional-integral
(PI) controller (	Aström and Ḧagglund 2006), a simpler vari-
ant of a PID controller, to adaptively update the scale using
cost feedback from the environment.

Our overall CAP framework incorporates a conserva-
tive penalty term into predicted costs in the basic model-
based safe RL framework, and adapts its scale to ensure the
penalty is neither too aggressive nor too modest. To eval-
uate CAP, we �rst illustrate its proposed bene�ts in simple
tabular gridworld environments using a linear programming-
based instantiation of CAP; there, we show that CAP indeed
achieves zero training violations and exhibits effective adap-
tive behavior. For state and image-based control environ-
ments, we evaluate a second instantiation of CAP, using a
cost constraint-aware variant (Wen and Topcu 2020) of cross
entropy method (CEM) (De Boer et al. 2005) coupled with
state-of-art dynamics models (Chua et al. 2018; Hafner et al.
2019) to optimize action sequences. Through extensive ex-
periments, we show that our practical algorithms substan-
tially reduce the number of real environment samples and
unsafe episodes required to learn feasible, high-reward poli-
cies compared to model-free baselines as well as ablations
of CAP. In summary, our main contributions are:

• an uncertainty-aware cost penalty function that can guar-
antee the safety of all training policy iterates

• an automatic update rule for dynamically tuning the de-
gree of conservativeness during training.

• a linear program formulation of CAP that achieves near-
optimal policies in tabular gridworlds while incurring zero
training violation

• and �nally, scalable implementations of CAP that learn
safe, high-reward actions in continuous control environ-
ments with high-dimensional states, including images.

2 Related Work
Safe RL Our work is broadly related to the safe rein-
forcement learning and control literature; we refer interested
readers to (Garc�a and Fernández 2015; Brunke et al. 2021)
for surveys on this topic. A popular class of approaches
incorporates Lagrangian constraint regularization into the
policy updates in policy-gradient algorithms (Achiam et al.
2017; Ray, Achiam, and Amodei 2019; Tessler, Mankowitz,
and Mannor 2018; Dalal et al. 2018; Cheng et al. 2019;
Zhang, Vuong, and Ross 2020; Chow et al. 2019). These
methods build on model-free deep RL algorithms (Schul-
man et al. 2017b,a), which are often sample-inef�cient, and
do not guarantee that intermediate policies during training
are safe. These safe RL algorithms are therefore liable to
perform large numbers of unsafe maneuvers during training.

Model-Based Safe RL Model-based safe RL approaches,
instead, learn to synthesize a policy through the use of a tran-
sition model learned through data. A distinguishing factor

among model-based approaches is their assumption on what
is known or safe in the environment. Most works assume
partially known dynamics (Berkenkamp et al. 2017; Koller
et al. 2019) or safe regions (Bastani 2021; Li and Bastani
2020; Bansal et al. 2017; Akametalu et al. 2014), and come
with safety guarantees that are tied to these assumptions. In
comparison, our work targets the more general setting, ob-
taining safety guarantees in a data-driven manner. In tabular
MDP settings, we prove a high probability guarantee on the
safety of any feasible solution under the conservative objec-
tive; we subsequently extend this result to ensure the safety
of all training episodes. On more complex domains, we pro-
vide approximate and practically effective implementations
for high-dimensional inputs, such as images, on which pre-
vious methods cannot be applied.

Our core idea of using uncertainty estimates as penalty
terms to avoid unsafe regions has been explored in several
prior works (Kahn et al. 2017; Berkenkamp et al. 2017;
Zhang et al. 2020). However, our work provides the �rst the-
oretical treatment of the uncertainty-based cost penalty that
is independent of the type of the cost (e.g., binary cost) and
the parametric choice of the transition model. Our theoreti-
cal analysis is similar to that of Yu et al. (2020), though we
extend their results, originally in the of�ine constraint-free
setting, to the online constrained MDP setting, and introduce
a new result guaranteeing safety for all training episodes.
Furthermore, our framework permits the cost penalty weight
to automatically adjust to transition model updates, using en-
vironment cost feedback during MBRL training.

3 Preliminaries
In safe reinforcement learning, one common problem for-
mulation is to consider an in�nite-horizon constrained
Markov Decision Process (CMDP) (Altman 1999)M =
(S; A ; T; r; c; ; � 0). Here, S; A are the state and action
spaces,T(s0 j s; a) is the transition distribution,r (s; a) is
the reward function,c(s; a) is the cost function, 2 (0; 1) is
the discount factor, ands0 � � 0(s0) is the initial state distri-
bution; we assume that bothr (s; a) andc(s; a) are bounded.
A policy � : S ! �( A ) is a mapping from state to distri-
bution over actions. Given a �xed policy� , its state-action
occupancy distribution is de�ned to be� �

T (s; a) := (1 �
 )

P 1
t =0  t Pr� (st = s; at = a), where Pr� (st = s; at = a)

is the probability of visiting(s; a) at timestept when exe-
cuting� in M starting ats0 � � 0. The objective in this safe
RL formulation is to �nd the optimal feasible policy� � that
solves the following constrained optimization problem:

max
�

J (� ) := E
hX

t =0

 t r (st ; at )
i

s.t. Jc(� ) := E
hX

t =0

 t c(st ; at )
i

� C
(1)

where the expectation is overs0 � � 0(�); st � T(st j
st � 1; at � 1); at � � (� j st ), andC is a cumulative constraint
threshold that should not be exceeded. We say that a pol-
icy � is feasibleif it does not violate the constraint, and the



optimization problem is feasible if there exists at least one
feasible solution (i.e., policy).

Unlike unconstrained MDPs, constrained MDPs cannot
be solved by dynamic programming; instead, a common ap-
proach is to consider the dual of Eq (1) (Altman 1999):

max
� (s;a ) � 0

1
1 � 

X

s;a

� (s; a)r (s; a)

s.t.
1

1 � 

X

s;a

� (s; a)c(s; a) � C

X

a

� (s; a) = (1 �  )� 0(s) + 
X

s0;a 0

T(s j s0; a0)� (s0; a0); 8s

(2)
The dual problem Eq (2) is a linear program over oc-
cupancy distributions, and can be solved using standard
LP algorithms; the second constraint de�nes the space of
valid occupancy distributions by ensuring a “conservation
of �ow” property among the distributions. Given its so-
lution � � , the optimal policy can be de�ned as� � (a j
s) = arg max � � (s; a), or equivalently,� � (a j s) =
� � (s; a)=

P
a � � (s; a) (if the optimal policy is unique).

Typically, the transition functionT is not known to the
agent; thus, the optimal policy� � cannot be directly com-
puted through LP. In model-based reinforcement learning
(MBRL), the lack of knownT is directly addressed by
learning an estimated transition function̂T through data
D := f (s; a; r; c; s0)g. Then, we can de�ne asurrogateob-
jective to Eq (2) by simply replacingT with T̂ and solving
Eq (2) as before. Likewise, we can replaceJ (� ) with Ĵ (� ),
andJc(� ) with Ĵc(� ), to obtained model-based objectives
in Eq (1). Putting all this together, we may de�ne a basic
model-based safe RL framework (Berkenkamp et al. 2017;
Brunke et al. 2021) that iterates among three steps: (1) solv-
ing for �̂ � approximately, (2) collecting data(s; a; r; c; s0)
from �̂ � , and (3) updatinĝT using all collected data so far.
However, at any �xed training iteration, the modeling error
may lead to sub-optimal, potentially infeasible�̂ � . This mo-
tivates our approach, described in the following sections.

4 CAP: Conservative and Adaptive Penalty
Next, we introduceconservative andadaptive cost-penalty
(CAP), our proposed uncertainty and feedback-aware
model-based safe RL framework. First, we precisely char-
acterize the downstream effect of the model prediction er-
ror on the cost estimatêJc(� ) by providing an upper bound
on the true costJ �

c (� ), which allows us to derive a penalty
function based on the epistemic uncertainty of the model.
To this end, we adapt the return simulation lemma results
in (Luo et al. 2021; Yu et al. 2020) to the cost setting and
derive the following upper bound on the true policy cost

1
1� 

P
s;a � �

T (s; a)c(s; a) with respect to the estimated pol-
icy cost 1

1� 

P
s;a � �

T̂
(s; a)c(s; a).

4.1 Cost Penalty
First, given a policy mapping� , we de�ne V �

c : S ! R
such thatV �

c (s) := E�;T [
P 1

t =0  t c(st ; at ) j s0 = s]. We
make the following assumption on the realizability ofV �

c .

Assumption 4.1. There exists a� > 0 and a function class
F such thatV �

c 2 � F for all � .

With this assumption, we show that the difference be-
tween the estimated and true costs can be bounded by the
integral probability metric (IPM) de�ned byF computed
between the true and the learned transition models.

Lemma 4.2 (Cost Simulation Lemma and Upper Bound).
Let theF -induced IPM be de�ned as

dF (T̂ (s; a); T(s; a))

:= sup
f 2F

jEs0� T̂ (s;a ) [f (s0)] � Es0� T (s;a ) [f (s0)]j (3)

Then, the difference between the expected policy cost
computed usingT andT̂ is bounded above:
P

s;a (� �
T (s; a) � � �

T̂
(s; a))c(s; a) � �

P
s;a � �

T̂
(s; a)dF (T̂ (s; a); T(s; a))

(4)

We provide a proof in Appendix A. This upper
bound illustrates the risk of applying MBRL with-
out modi�cation in safety-critical settings. Attain-
ing 1

1� 

P
s;a � �

T̂
(s; a)c(s; a) � C does not guar-

antee that � will be feasible in the real MDP (i.e.,
1

1� 

P
s;a � �

T (s; a)c(s; a) � C) because the vanilla model-
based optimization does not account for the model error's
impact on the policy cost estimation,�d F (T̂ (s; a); T(s; a)) .

To enable model-based safe RL that can transfer feasi-
bility from the model to the real world, for a �xed learned
transition model̂T, we seek a cost penalty functionuT̂ : S �
A ! R such thatdF (T̂ (s; a); T(s; a)) � uT̂ (s; a); 8s; a. If
such a function exists, then we can solve the following LP:

max
� (s;a ) � 0

1
1 � 

X

s;a

� (s; a)r (s; a)

s.t.
1

1 � 

X

s;a

� (s; a)(c(s; a) + �u T̂ (s; a)) � C

X

a

� (s; a) = (1 �  )� 0(s) + 
X

s0;a 0

T̂ (s j s0; a0)� (s0; a0); 8s

(5)
We can guarantee that the solution policy� of Eq (5) is fea-
sible forT—in particular, note that

1
1 � 

X

s;a

� �
T (s; a)c(s; a)

�
1

1 � 

X

s;a

� �
T̂

(s; a)(c(s; a) + �u (s; a)) � C:

However, this result is not useful if we cannot compute
dF (T̂ (s; a); T(s; a)) . A suitable function class for analysis
is F = f f : kf k1 � 1g, which typically can be satis-
�ed with Assumption 4.1 since the per-step cost is bounded.
Then, for the tabular-MDP setting (i.e., �nite state and action
space), we can in fact obtain a strong probabilistic guarantee
on feasibility.

Theorem 4.3 (Tabular Case High-Probability Feasibility
Guarantee). AssumeF = f f : kf k1 � 1g and that As-

sumption 4.1 holds. De�neu(s; a) :=
q

jSj
8n (s;a ) ln 4jSjjAj

� ,



Algorithm 1: Safe MBRL with Conservative and Adaptive
Penalty (CAP)

1: Inputs: Transition model̂T� , experience bufferD, cost
limit C, initial � value,� learning rate�

2: Initialize D with random policy
3: for Episode= 1 ; 2; : : : do
4: # Conservative penalty
5: Train T̂� usingD
6: Optimize� using Eq (5) (LP) or Eq (7) (CCEM)
7: Collect trajectory� := f (st ; at ; r t ; ct ; st +1 )g and

store to bufferD = D [ f � g
8: # Adaptive penalty
9: ComputeJc(� t ) =

P
t =0  t ct

10: Update�  � + � (Jc(� t ) � C)
11: end for

wheren(s; a) is the count of(s; a) in D and� 2 (0; 1]. Then,
with probability1 � � , a policy that is feasible for Eq(5) is
also feasible for Eq(2).

Furthermore, we can extend this result to guarantee that
all intermediate solutions during training are safe.

Corollary 4.4 (High-Probability Zero-Training-Violations
Guarantee). Assume the same set of assumptions as Theo-
rem 4.3 and that the training lasts forK episodes. Then,

for any � 2 (0; 1], de�ne u(s; a) :=
q

jSj
8n (s;a ) ln 4K jSjjAj

� .
Then, with probability1 � � , all intermediate solutions to
Eq (5) are feasible for Eq(2).

Proofs are given in Appendix A. At a high level, Theo-
rem 4.3 follows from observing thatdF is the total varia-
tion distance for the chosenF and applying concentration
bound on the estimation error of̂T . Then, Corollary 4.4 can
be shown by a union-bound argument.

Together, these results suggest that a principled way of
incorporating a conservative penalty function into the 3-step
basic model-based safe RL framework described at the end
of Sec. 3 is to replace the original constrained MDP objec-
tive (i.e., Eq (2)) with its conservative variant (i.e., Eq (5)).

4.2 Adaptive Cost Penalty
The upper bound derived in the previous section can be
overly conservative in practice. Thus, we derive an adaptive
penalty function based on environment feedback to make
it more practical. First, we observe that the conservative
penalty modi�cation described above is not yet enough for
a practical algorithm, because the proposed penalty function
as in the theorem or the corollary is too conservative, to the
extent that Eq (5) might admit no solutions. In practice, it is
often estimated asu(s; a) := �=

p
n(s; a), where� 2 R is

some scaling parameter.
We observe that setting� to a �xed value throughout

training can lead to poor performance. Different scales may
be appropriate for use with different environments, tasks,
and stages of training. If it is set too low, then the cost
penalty may not be large enough to ensure safety. On the
other hand, if it is set too large, then the model may be overly

conservative, discouraging exploration and leading to train-
ing instability.

To avoid these issues, we propose to adaptively update�
during training. Observe that theeffectof a particular� value
on a policy's true cost in the environment can be measured
from executing this policy in the real environment. Thus,
we can in fact view the co-evolution of the policy and the
learned transition model as a control plant, for which the
policy cost is the control output; then,� can be viewed as
its control input. Now, to set� , we employ a PI controller,
a simple variant of the widely used PID controller (	Aström
and Ḧagglund 2006) from classical control, to incrementally
update� based on the current gap between the policy's true
cost and the cost threshold. More precisely, we propose the
following PI control update rule:

� t +1 = � t + � (Jc(� t ) � C) (6)

where� is the learning rate.
This update rule is intuitive. Consider the direction of the

� update whenJc(� t ) < C . In this case, the update will be
negative, which matches our intuition that the cost penalty
can be applied less conservatively due to the positive margin
to the cost limitC. The argument for the caseJc(� t ) > C
is analogous. In high-dimensional environments, as the full
expected cost cannot be computed exactly, and we instead
approximate it using a single episode (i.e., the current policy
� t rollout in the environment). To ensure� is non-negative,
we additionally perform amax(0; �) operation after each PI
update.

Now, the full CAP approach is described in Algorithm 1.
At a high level, CAP extends upon the basic model-based
safe RL framework by (1) solving the conservative LP (Line
7, Eq (5)), and (2) adapting� using PI control (Lines 10 &
11). We set the initial value for� using an exponential search
mechanism, which we describe in the Appendix. We validate
this LP formulation of CAP using a gridworld environment
in our experiments.

4.3 CAP for High-Dimensional States
Note that this tabular LP variant of CAP cannot extend to
environments with continuous state and action spaces, repre-
sentative of many high-dimensional RL problems of interest
(e.g., robotics); their continuous nature precludes enumerat-
ing all state-action pairs, which is needed to express the lin-
ear program. Therefore, we propose a scalable implementa-
tion of CAP amenable to continuous control problems. First,
we revert back to the policy-based formulation in Eq (1), and
de�ne the following equivalent objective:

max
�

E
hX

t =0

 t r (st ; at )
i

s.t. E
hX

t =0

 t � (c(st ; at ) + �u T̂ (st ; at ))
i

� C
(7)

where u(st ; at ) is a heuristic penalty function based on
statistics of the learned transition model.

To optimize Eq (7), we employ the constrained cross en-
tropy method (CCEM) (Wen and Topcu 2020; Liu et al.
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A Proofs
In this section, we provide proofs for the theoretical results
appeared in Section 4. We will restate each of the results and
then append their corresponding proof.

Lemma A.1 (Cost Simulation Lemma and Upper Bound).
Let theF -induced IPM be de�ned as

dF (T̂ (s; a); T(s; a)) := sup f 2F jEs0� T̂ (s;a ) [f (s0)] � Es0� T (s;a ) [f (s0)]j
(8)

Then, the difference between the expected policy cost com-
puted usingT andT̂ is bounded above:
P

s;a (� �
T (s; a) � � �

T̂
(s; a))c(s; a) � �

P
s;a � �

T̂
(s; a)dF (T̂ (s; a); T(s; a))

(9)

Proof. Using the telescoping lemma (Yu et al. 2020; Luo
et al. 2021), we have that

1
1 � 

X

s;a

(� �
T (s; a) � � �

T̂
(s; a))c(s; a)

= 
X

s;a

� �
T̂

(s; a)
h
Es0� T (s;a ) V

�
T (s0) � Es0� T̂ (s;a ) V

�
T̂

(s0)
i

Then, by Assumption 4.1, we have that


X

s;a

� �
T̂

(s; a)
h
Es0� T (s;a ) V

�
T (s0) � Es0� T̂ (s;a ) V

�
T̂

(s0)
i

� 
X

s;a

� �
T̂

(s; a) sup
f 2 � F

�
�
�Es0� T̂ (s;a ) [f (s0)] � Es0� T (s;a ) [f (s0)]

�
�
�

� 
X

s;a

� �
T̂

(s; a)�d F (T̂ (s; a); T(s; a))

Putting everything together, we have that
X

s;a

(� �
T (s; a) � � �

T̂
(s; a))c(s; a)

� �
X

s;a

� �
T̂

(s; a)dF (T̂ (s; a); T(s; a))

Theorem A.2 (Tabular Case High-Probability Feasibility
Guarantee). AssumeF = f f : kf k1 � 1g and that As-

sumption 4.1 holds. De�neu(s; a) :=
q

jSj
8n (s;a ) ln 4jSjjAj

� ,

wheren(s; a) is the count of(s; a) in D and� 2 (0; 1]. Then,
with probability1 � � , a policy that is feasible for Eq(5) is
also feasible for Eq(2).

Proof. In order for a policy that is feasible for Eq (5) is also
feasible for Eq (2), we need to have

1
1 � 

X

s;a

� �
T (s; a)c(s; a)

�
1

1 � 

X

s;a

� �
T̂

(s; a)(c(s; a) + �u (s; a)) � C:

By the lemma above, this is equivalent to havingu(s; a) �
dF (T̂ (s; a); T(s; a)) ; 8s; a. Since, we assumeF = f f :
kf k1 � 1g, this implies

dF (T̂ (s; a); T(s; a))

= dTV(T̂ (s; a); T(s; a))

=
1
2



 T̂ (s; a); T(s; a)





1

where the last step follows becauseT̂(s; a) andT(s; a) are
multinomial distributions, which are countable. Then, we
need

u(s; a) �
1
2

max
s;a



 T̂ (s; a); T(s; a)





1
(10)

By Hoeffding's inequality and thel1 concentration bound
for multinomial distribution, we have that, for any� > 0,

we can setu(s; a) :=
q

jSj
8n (s;a ) ln 4jSjjAj

� , then Eq (10) will
hold with probability1 � � , completing the proof.

Corollary A.3 (High-Probability Zero-Training-Violations
Guarantee). Assume the same set of assumptions as Theo-
rem A.2 and that the training lasts forK episodes. Then,

for any � 2 (0; 1], de�ne u(s; a) :=
q

jSj
8n (s;a ) ln 4K jSjjAj

� .
Then, with probability1 � � , all intermediate solutions to
Eq (5) are feasible for Eq(2).

Proof. Since we want allK intermediate solutions to be fea-
sible with probability1 � � , the fault tolerance for any in-
dividual intermediate solution is�=K ; this follows from an
union bound argument. Therefore, we can adjust the concen-
tration bound from Hoeffding's inequality by a factor ofK

and obtain that by settingu(s; a) :=
q

jSj
8n (s;a ) ln 4K jSjjAj

� ,
with probability 1 � � , we can guarantee all intermediate
solutions to Eq (5) are feasible for Eq (2).

B CAP with Linear Programming
This implementation of CAP is described in detail in the
main text. Here, we describe the exponential search mecha-
nism we use to initialize� for the very �rst training episode.
Starting with a high value for� (e.g., 10), we use it to
construct a new constrained optimization problem of form
Eq (5) and attempt to solve it. If the problem is infeasible,
then we halve the value of� and repeat the process. We stop
at the �rst value of� for which the problem is feasible, and
this value is taken as the initialized� value.

C CAP with Constrained Cross Entropy
Method

In Algorithm 2, we provide the pseudocode for the con-
strained cross entropy method (CCEM). Here, we reiterate
the algorithm description from the main text for complete-
ness. At a high level, CCEM �rst samplesN action se-
quences (Line 4) and computes their values and costs (Line
5). Then, if there were more thanE samples that satisfy the
constraint, then theE samples with highest rewards are se-
lected (Line 10); otherwise, theE samples with lowest costs



are selected (Line 8). These selectedelite samples are used
to update the sampling distribution (Line 12). This process
continues forI iterations, and the eventual distribution mean
is selected as the optimal action sequence (Line 14).

Algorithm 2: Constrained Cross Entropy Method

1: Inputs: Transition model estimatêT� , experience buffer
D, cost limitC

2: CCEM Hyperparameters: Population sizeN , elite
population sizeE , max iterationI , planning horizonH ,
initial sampling distributionN (� 0; � 0)

3: for i = 1 ; : : : ; I do
4: Sample N action sequences A1 :=

f a1
t gH

t =1 ; : : : ; AN := f aN
t gH

t =1 � N (� i � 1; � i � 1)
5: Evaluate the action sequences using Eq (7) by simu-

lating trajectories in̂T�

6: Construct feasible setX := f An j ~Jc(An ) � C; n 2
[N ]g

7: if jX j < E then
8: Construct elite setE := f TheE sequences out of

all f An gN
n =1 with lowest costsg

9: else
10: Construct elite setE := f The E sequences inX

with highest rewardsg
11: end if
12: Compute� i ; � i using Maximum Likelihood overE
13: end for
14: Outputs: Optimal action sequencef a�

1; :::; a�
H g := � I

D Gridworld Experimental Detail
The gridworld environment is of size8� 8. The action space
consists of the four directional primitives: Up, Down, Left,
Right. For each action, there is a20%chance that slippage
occurs and the agent moves in a random direction, introduc-
ing stochastic transitions to the environment. The reward and
the cost functions are randomly generated Bernoulli distri-
butions drawn according to a Beta(1,3) prior. Each state has
uniform probability of being selected as the initial state for
each episode. The discount rate is0:99. The cost threshold
is kept at0:1 for all trials. Training lasts 30 episodes, and
we use Gurobi (Gurobi Optimization, LLC 2021) as the LP
solver in our implementation.

D.1 Additional results
In Figure 4, we illustrate the full version of Figure 1 with one
standard deviation error bars added in. In Table 2, we also
show these results in table format. As shown, CAP ablations
with �xed � values exhibit greater variance in their perfor-
mances over100 random seeds; this supports the claim in
the main text that �xed� values are more sensitive to the
randomness in the environment distribution. Finally, we ob-
serve that CAP on average obtains higher return than the
optimal policy in the �rst iteration. At initialization, CAP is
not guaranteed to satisfy the constraints, and it may optimize
a constraint-violating policy that achieves higher return than
the optimal policy, explaining this behavior.

E High-Dimensional Environments
Experimental Detail

E.1 Environments
• Velocity Constrained HalfCheetah: The state space is

17-dimensional and the action space is 6-dimensional.
We use the original environment reward,v � 1

10 aT a, v is
the forward velocity. The cost isjvj (Zhang et al. 2020),
meaning that there is a direct trade-off between cost and
reward. The cost limit is set to152, half of the average
speed of an unconstrained PPO expert agent (Zhang et al.
2020).

• Constrained Car-Racing:The state space is a top down
image of the car and the surrounding track. We down-
scale the image to 64 by 64 by 3. For model-free base-
lines, we also stack the last 4 frames, as common in re-
inforcement learning on image based environments. The
action space is three dimensional, controlling steering,
acceleration and braking. Each value is continuous and
bounded. We use an action repeat of 2 to produce a bet-
ter signal to the model (Hafner et al. 2019). We keep
the original reward, which incentivizes the agent to drive
through as many tiles as possible. We use a binary cost
that is 1 if the car skids. Skidding is a part of the original
environment; a wheel skids if it's force exceeds the fric-
tion limit, which is different on grass and road surfaces.

E.2 Uncertainty Estimators
State-based environments:We model the environment
transition function using an neural ensemble of sizeN ,
where network's output neurons parameterize a Gaussian
distributionT̂ = N (� (st ; at ); �( st ; at ) (Chua et al. 2018).
We setu(s; a) = max N

i =1


 � i

� (s; a)



F to be the maximum
Frobenius norm of the ensemble standard deviation outputs,
as done for of�ine RL in Yu et al. (2020).

Image-based environments: We implement PlaNet
(Hafner et al. 2019), which models the environment tran-
sition function using a latent dynamics model with deter-
ministic and stochastic transition states; we refer interested
readers to the original paper for details. PlaNet does not pro-
vide an uncertainty estimate because it only utilizes a sin-
gle transition model. To obtain an uncertainty estimate, we
train a bootstrap ensemble of one-step hidden-state dynam-
ics model as in Sekar et al. (2020). Each one-step model in
the ensemble predicts, from each deterministic stateh, the
next stochastic state. We formulate our uncertainty estima-
tor asu(h; a) = V ar(� i (h; a)ji = [1 ::K ]), the variance of
ensemble predictionsf � i gK

i =1 . As in Sekar et al. (2020), to
keep the scale of this uncertainty estimator similar to that of
state-based uncertainty estimator, we multiply it by 10000.

E.3 Network Architecture
We use a neural networkC to approximate the environ-
ment's true cost function. When the cost is continuous, the
network's output neurons parameterize a Gaussian distri-
bution and we construct our conservative cost function as
C(s; a)+ �u (s; a). When the cost is binary, the network out-
puts a logit and we construct our conservative cost function
as1[C(s; a) + u(s; a) > 0].





Method HalfCheetah Car-Racing
Kappa� Return Cost (Limit 152) Cost Violation Kappa� Return Cost (Limit 0) Cost Violation

CAP Adaptive 1456.3 144.3 1.7 Adaptive 21.7 0.4 93.3
CAP 10.0 -36.5 5.4 0.0 10.0 1.0 0.4 52.0
CAP 1.0 1092.9 111.5 0.0 1.0 6.2 0.4 30.3
CAP 0.1 1774.4 179.9 70.0 0.1 35.4 2.3 149.0
CAP 0.0 1588.0 198.1 80.0 0.0 26.9 9.3 184.0
CEM N/A 2330.7 344.0 78.7 N/A 40.3 202.1 194.3

Table 3:CAP ablations results on HalfCheetah and Car-Racing.

Hyperparameter State-based Image-based
Ensemble sizeK 5 5
Optimizer Adam Adam
Optimizer� Adam Adam
Learning rate 0.001 0.001
Learning rate� 0.1 0.01
Initial � 1.0 0.1
Reward discount factor 0.99 0.99
Cost discount factor cost *0.99 *0.99
Batch size 256 50
Exploration steps 1000 5000
Experience buffer size 1000000 1000000
Uncertainty multiplier 1 100000
CEM Hyperparameters
Planning horizonH 30 12
Max iterationI 5 10
Population sizeN 500 1000
Elite population sizeE 50 100

Table 4:CAP hyperparameters
* We set cost discount factor to 1.0 when the cost is binary,

so total cost per episode is directly interpretable.

CAP dominates FOCOPS, obtaining better episode return
with lower cost and total violations. CAP has more cost vio-
lations than PPO-Lagrangian, but we see that this is because
PPO-Lagrangian degrades to a trivial policy that maintains a
stationary position, obtaining negative return with minimal
risk of cost violations.

E.6 Compute resources
We use a single GTX 2080 Ti with 32 cores to run our ex-
periments, each run takes about 10 hours in clock time.
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